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ABSTRACT
Motivation: A key aspect of transcriptional regulation is the binding
of transcription factors to sequence-specific binding sites that allow
them to modulate the expression of nearby genes. Given models of
such binding sites, one can scan regulatory regions for putative bind-
ing sites and construct a genome-wide regulatory network. In such
genome-wide scans, it is crucial to control the amount of false posit-
ive predictions. Recently, several works demonstrated the benefits of
modeling dependencies between positions within the binding site. Yet,
computing the statistical significance of putative binding sites in this
scenario remains a challenge.
Results: We present a general, accurate and efficient method for
computing p-values of putative binding sites that is applicable to a
large class of probabilistic binding site and background models. We
demonstrate the accuracy of the method on synthetic and real-life data.
Availability: The procedure for scanning DNA sequences and com-
puting the statistical significance of putative binding site scores is
available upon request at http://compbio.cs.huji.ac.il/CIS/
Contact: nir@cs.huji.ac.il

INTRODUCTION
Accurate detection of cis-regulatory elements in long DNA
sequences is a central challenge in modern biology, as it offers a direct
way for understanding transcriptional regulation and the expression
of genes. Accordingly, extensive efforts have been put in gathering
known transcription factor binding sites (Wingender et al., 2001),
and in finding models that characterize them. These models facilit-
ate a systematic scan of genomic sequences to identify transcription
factor target genes. In this article, we are interested in the following
task: assuming that we have a model that characterizes the binding
preferences of a particular transcription factor, we want to perform
a genome-wide scan for its binding sites. A fundamental challenge
in performing such a scan is in controlling the number of prediction
errors. This problem is further emphasized in eukaryotic genomes
where binding sites appear in extremely long intergenic regions. As
a consequence, there is high probability of finding spurious bind-
ing sites due to the immense number of putative sites evaluated.
To control the amount of this false positive noise in our predic-
tions, we assign each possible site a score, and estimate its statistical
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significance. That is we compute how likely it is to find a score that
is at least as good by chance.

Formally, the p-value of a putative binding site with score S is
the probability of achieving this or higher score according to the
background distribution over sites. This can formally be written as

IEPBG(X)[1 {Score(X) ≥ S}] (1)

where 1{ } is the indicator function, PBG(X) is the background dis-
tribution over a random variable X that ranges over possible DNA
motifs, and Score() is the scoring function. In a probabilistic frame-
work, X is usually a subsequence of a fixed length and the score
of each subsequence is the log of the ratio between its probability
according to the binding site model, and its probability according to
a background model (log-odds score).

The formulation of Equation (1) suggests a simple procedure for
estimating the p-value of a score S in which we sample i.i.d. samples
from PBG(X), and then compute the fraction of samples whose scores
are as high as S. Such a naive sampling procedure can reliably estim-
ate p-values that are at least two orders of magnitude larger than the
inverse of the number of samples. Thus, to estimate a p-value in the
order of 10−3 we need about 105 samples.

It might seem that p-values from the magnitude of 10−3 are suf-
ficient for finding statistically significant binding sites. Recall, how-
ever, that the typical application involves scanning long sequences.
In this scenario, we treat each subsequence as a putative binding site,
and then correct for multiple testing (e.g. Benjamini and Hochberg ,
1995).1 Assuming a typical promoter length of size 500 bp, these cor-
rections result in the need for estimating p-values in the order of 10−5

or even lower, rendering the naive sampling approach impractical as
it requires the order of 107 samples.

More sophisticated approaches either derive efficient analytical
algorithms for the exact p-value (Wu et al., 2000; Huang et al.,
2004), or use large deviation approximations (Bailey and Gribskov,
1998). These approaches are effective for probabilistic profile models
(also known as PSSMs or PWMs) that assume that the probability of
nucleotides at one position of the binding site is independent of all
other positions.

1An alternative model is to compute the p-value for the best score of a sub-
sequence within a long sequence. Such a model explicitly deals with the
dependencies between the putative binding sites. However, the computations
of p-values in this model introduce several technical problems. In practice,
treating the evaluation of each binding site as an individual hypothesis test
and then correcting for multiple tests does not introduce noticeable bias.
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Recently, several works demonstrated the importance of model-
ing transcription factor binding sites using probabilistic models that
allow for inner-dependencies within the positions of a binding site
(Barash et al., 2003; King and Roth, 2003; Zhou and Liu, 2004). Such
models provide richer representations of the binding preferences of
a transcription factor, and consequently can better discriminate sites
that match these preferences. This can lead to more accurate binding
site identification. Yet, the question of assigning p-values for putat-
ive binding sites when using dependency models still remains open.
Specifically, analytical methods that are designed for PWMs are not
applicable for these richer models.

In this article, we present a general, accurate and efficient method
for estimating p-values. Our compound importance sampling (CIS)
algorithm uses importance sampling (Hammersley and Handscomb,
1964), and allows us to conceptually mimic the naive sampling
approximation using a significantly smaller number of samples.

As we describe below, CIS is applicable for a wide range of bind-
ing site models. Specifically, our implementation of CIS is based
on Bayesian networks models. This covers many commonly used
models as a special case, such as Markov models, trees and mixture
of PSSMs. We demonstrate the accuracy and efficiency of the CIS
method on synthetic and real-life data for the case of simple position-
independent models as well as for models that allow dependencies,
where standard methods cannot be applied.

METHODS
To estimate the p-value of the score S of a candidate site, one needs to estimate
Equation (1). In the naive sampling approach this is carried out by sampling
from the background distribution [PBG(X)] and computing the fraction of
samples where Score(X) ≥ S. As discussed in the previous section, sampling
directly from PBG requires an unreasonable number of samples to reliably
estimate small p-values, since for most samples Score(X) < S. This suggests
that it would be better to try and sample assignments of X that have higher
scores. In doing so, we have to make sure that we still compute correct
p-values of these scores with respect to PBG.

The compound importance sampling approach
Importance sampling (Hammersley and Handscomb, 1964) is a general
method that estimates IEP(X)[f (X)], where f (X) is some function over X,
using samples from a proposal distribution Q(X). It is especially useful in
cases where sampling directly from P(X) is not possible. The method relies
on the following equalities

IEP(X)[f (X)] =
∑
x

P (x)f (x) =
∑
x

P (x)f (x)
Q(x)

Q(x)

=
∑
x

Q(x)

[
f (x)

P (x)

Q(x)

]

= IEQ(X)[f (X)w(X)], (2)

where the weight w(x) ≡ P(x)/Q(x) compensates for the bias intro-
duced by sampling from Q(X) rather than P(X). Estimating IEP(X)[f (X)]
using samples from Q(X) is therefore basically the same procedure as naive
sampling, but here each sample x is re-weighted according to w(x). The total
weight of the samples in this case is not the number of samples N but rather∑N

i w(xi).
To apply this general framework to estimate p-values, we use the formu-

lation of Equation (1), where f (x) = 1 {Score(x) ≥ S}. The main decision
in applying importance sampling is the choice of the proposal distribution Q.
For the log-odds score, values of X sampled from the binding site model are

more likely to receive high scores. Naively, we can set Q to be the distribu-
tion of the binding site model PM(X), and directly sample from the region
of high scores. This approach, however, is problematic since we need a fair
amount of low scoring samples, even when estimating the p-values of high
scoring samples. Without such samples the empirical histogram of observed
scores would be biased towards high scores, and the empirical estimation of
the p-values would be poor (data not shown).

One possible solution is to sample a mixture of n1 samples from the model
distribution PM and n2 samples from the background PBG. This is equivalent
to sampling from

Q(X) = n1

n1 + n2
PM(X) + n2

n1 + n2
PBG(X) (3)

While this solution takes into account both extremes, in practice it still suffers
from poor estimation of the ‘middle-ground’ scores. Thus, we refine the above
approach and consider a combination of richer set of models. We define
CIS as:

Q(X) =
∑
α∈A

nαQα(X) (4)

where A is an index set and nα is the fraction of samples generated from the
model Qα . The models {Qα : α ∈ A} are basically ‘smoothed’ versions of
PM(X) that bias it in different degrees toward PBG(X).

Characterizing CIS’s mixture distributions
The main question we now face is how to define the set of mixture
component’s {Qα} that will effectively ‘smooth’ PM(X) towards PBG(X).
Specifically, we want to create distributions {Qα} that will enable us to use
a relatively small number of samples and, at the same time, provide a good
approximation for the distribution of Score(X) over the entire range of scores.

The method we suggest is based on the following formulation: let X =
X1, . . . , Xk denote the k binding site’s positions. Using the basic chain rule
for any multivariable distribution we can write:

P(X) =
k∏

i=1

P(Xi | X1, . . . , Xi−1) (5)

where P is either PBG(X) or PM(X). We can now define Qα as:

Qα(X) =
k∏

i=1

[αPM(Xi | X1, . . . , Xi−1)

+ (1 − α)PBG(Xi | X1, . . . , Xi−1)] (6)

It can easily be shown that Qα is indeed a proper distribution.
The basic difference in the above formulation from Equation (3) is that it

mixes the conditional probability of each position in the binding site separ-
ately. As an example, consider a simple case in which the the background
distribution is a zero-order Markov model favoring Guanine (G) with high
probability for each position, and the binding site model is a 5 bp long PSSM
favoring Adenine (A) with high probability for each position. In this case
sampling from a distribution defined as Equation (3) would result in many
high scoring AAAAA as well as many low scoring GGGGG samples. ‘Mid
range’ samples, such as GAGAG would be very rare, degrading the evalu-
ation of the overall p-value range. When using Equation (6) with α = 0.5,
on the other hand, GAGAG is as likely as the two extremes when assuming
that positions are independent of each other.

The idea of CIS is further illustrated in Figure 1. Figure 1a shows the
sequence logo of the background (Q0) and the binding site (Q1) defining the
extreme distributions as well as one of the middle ground mixture distributions
(Q0.5). The effect of sampling from each of these component is illustrated in
Figure 1b, where the corresponding score distributions are shown. Sampling
only from PM(X) (corresponding to Q1 in Figure 1) results mostly in high
scoring samples. This is problematic since the total weight of the scores
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Fig. 1. Illustration of a proposal distribution Q(X). (a) Sequence logos for several components of the porposal distribution, ranging from the binding site model
(top), to the background model (bottom) where the information content of each position is low. (b) The distributions of log-odd scores for the three models.

accumulates extremely slowly resulting in a poor overall p-value estimation.
If, on the other hand, we sample only from PBG(X) (Q0 in Figure 1), we
get the right distribution but require a large number of samples for accurate
estimation of the p-values of high scores. Incorporating samples from a mix-
ture distribution as Q0.5 in Figure 1 offers a better coverage of the middle
ground. As we demonstrate in the next section, combining a whole set of
such mixture distributions results in improved p-value estimation for the full
range.

We emphasize that the formulation is not limited to any specific form of
distribution. The only assumption we make in Equation (5) about PM(X) or
PBG(X) is that we can compute the conditional probability of Xi , given a
specific value assignment to the preceding variables. In using Qα , we either
sample an instance or compute the probability of a given instance. In both
cases, these are the only queries we need. Also note that we choose the order
of variables in which to perform this expansion. In some cases, a specific
order (e.g. one that conforms to the topological order in a Bayesian network)
can lead to more efficient computations.

In the case of Bayesian networks, Equation (5) and consequently
Equation (6), decompose according to the dependency model, where each
Xi is dependent on a (typically small) number of additional positions. In
the case of PWMs, for example, each position is independent of all other
positions, while in K-order Markov model each position depends only on
K others. Therefore, using Equation (6) rather than the naive mixture of
Equation (3) results in an inherently different set of samples. Similarly to the
above illustrative example, this ‘smoothed’ mixing results in better coverage
of the middle ground score range and leads to an overall accurate estimation
of p-values.

Finally, when using CIS we have to decide on the number of components
as well as the number of samples and degree of smoothing (α) for each
component. In this work, we use 10 components for which the α coefficient
vary linearly from 0 to 1. The number of samples drawn from each component
decreases exponentially, starting from 10 000 samples from PBG(X) to 1000
samples from PM(X). It should be noted that the CIS method was proved to
be robust in a wide range of settings.

RESULTS
As a case study, we examine the binding site model of RAP1 in
Saccharomyces cerevisiae from TRANSFAC 7.3 (Wingender et al.,
2001), which is 14 bp long. We estimated the p-value of each
score using the following methods: CIS algorithm using 40 000
samples from a proposal distribution as illustrated in Figure 1;
MAST (Bailey and Gribskov, 1998); functional approximation by
normal distribution, where we estimate the mean and variance of

Score(X) according to PBG(X), and then use the tail probability of
normal distribution as the p-value estimate.

As a proxy to the truth, we computed the p-values using the naive
sampling procedure with 109 samples as described above. Figure 2a
compares the p-value estimates by the different methods. While all
methods appear the same, zooming into the region of interest in
Figure 2b reveals significant discrepancies. It is evident that the
normal approximation is inaccurate in this region. Both CIS and
MAST provide accurate estimations, with a slight advantage to the
CIS method.

Figure 2c shows evaluation of p-values for a binding site model
with dependencies between positions studied by Barash et al. (2003)
for the PHO4 transcription factor. For models such as this, MAST is
not applicable. As we can see, the estimations of CIS are similar to the
direct sample estimate. One might suspect that the slight deviation
observed between the two curves is due to the smaller number of
samples used by CIS. However, when comparing 10 repetitions of
each procedure shown in Figure 2d, we see that CIS estimates are
more robust than the ones by naive sampling while using two orders
of magnitude fewer samples.

The robustness of the CIS estimator is furthered illustrated in
Figure 3. Here the relative error in p-value estimation is plotted as a
function of the estimated p-value (a), and of the sample size for two
fixed p-values (b). In both graphs the advantage of using CIS with
only 40 000 samples over using naive sampling with 106 samples is
clear, particularly for p-values lower than 10−3. As we can see, CIS
with 40 000 samples provides a good compromise between efficiency
and accuracy.

So far we demonstrated the effectiveness of CIS with respect to
the background distribution directly. We conclude by demonstrating
our approach on a real-life genome-wide scan. Using the Chro-
matin immunoprecipitation location analyses of Lee et al. (2002),
we excluded all the promoter regions of S.cerevisiae genes that were
found to be targets of the ZAP1 transcription factor. We then used the
dependency model for ZAP1’s binding sites by Barash et al. (2003)
to scan the promoter regions of remaining genes of S.cerevisiae.
Given that we removed ZAP1 targets, we expect that the remaining
promoters will contain only few real binding sites of ZAP1. We used
a third-order Markov model as a background distribution, and plotted
the empirical frequencies of high scoring subsequence.
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Fig. 2. p-value estimations for putative binding sites. Compared are the naive sampling approach using 106 samples, the normal approximation, MAST, and
our CIS method (with 40 000 samples). Shown is the p-value (y-axis) as a function of the log-odds score (x-axis). (a) For the position independent model of
TRANSFAC’s RAP1; (b) Same as (a), zoomed on p-values < 10−4; (c) For the dependency model of PHO4 studied by Barash et al. (2003) (here MAST is
not applicable); (d) Test for robustness with 10 repeats of (c).

We note that in such a ‘real-life’ test, the accuracy of the results
can be affected by factors other than the sampling technique used.
These include the accuracy of the binding site and background mod-
els, and the fact we use i.i.d. subsequence samples instead of long
sequences. Figure 4 shows that once again the normal approxima-
tion results in poor p-value estimates. More importantly, using the
models described above and 40 000 i.i.d. samples, the CIS method
provides accurate estimations over a wide range of p-values.

DISCUSSION
In this work we introduced a general and efficient method for
estimating the statistical significance of putative binding sites in
genome-wide scans. We demonstrated the accuracy of the method
on both synthetic and genomic data, using simple as well as rich
probabilistic models.

The CIS algorithm offers a practical method to handle a wide range
of probabilistic representations of binding sites and background
models. At the theoretical level, the only formal constraint of the CIS
algorithm is for probability distributions that can be easily sampled

from, or efficiently used to compute the conditional probability of
any subsequence. This can be done in exact form in graphical mod-
els, such as Bayesian and Markov networks with small tree width
(Pearl, 1988; Jensen, 1996). In fact, our implementation is based on
Bayesian network representation of the models. For models where
these queries are infeasible, one can adopt our methods to work with
approximate inference techniques. This issue remains open for future
research.

The general framework of the CIS algorithm makes it applicable
to other tasks that involve the identification of sequence motifs, such
as the identification of splicing junctions, the detection of protein
motifs, etc.

In a broader theoretical context, p-value estimation can be viewed
as an instance of the well-studied statistical problem of estimating
the ratio between two normalizing constants (Meng and Wong, 1996;
Chen and Shao, 1997; Gelman and Meng, 1998). The statistical
literature for this problem includes a range of approaches that may
be applicable to our problem. Several of these approaches are based
on using importance sampling with different choices of sampling
distributions [see Chen and Shao (1997) for a review]. One case that
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Fig. 3. Robustness of p-value estimation. Samples (109) from a third-order Markov background model were used to approximate the scores’ p-values to
the order of 10−5. The biding site model is TRANSFAC’s F_CBF1_B. For each setting 50 runs were made to compute the average relative error in p-value
estimation (a) as a function of the estimated p-value and (b) as a function of the sample size at p-values 10−3 and 10−5.
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Fig. 4. p-value estimation for a genome-wide scan of S.cerevisiae using
the ZAP1 dependency model studied by Barash et al. (2003) with a third-
order Markov background model. Shown are the normal approximation of
the p-values and the CIS estimates compared to the empirical frequency of
these scores.

has received some analytical treatment is the proposal distribution
of Equation (3) (Chen and Shao, 1997). However, to the best of our
knowledge, there is no analysis of the mixture distribution we use
here. This raises the question of the theoretical properties of our
estimator and its applicability in a wider context. These questions,
however, are beyond the scope of this work.
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